
 

 

  

Abstract—For cyclostationary signal processing, cyclic spectrum 

reconstruction is an important and challenge task for efficient and 

robust spectrum sensing, since cyclic feature detection takes advantage 

of spectral correlation characteristics to identify signal parameters and 

make reliable spectrum access decisions under uncertain noisy 

environments, but requires high complexity sampling and 

computational cost especially for wideband spectrum sensing. This 

paper proposes a novel cyclic spectrum reconstruction approach by 

exploiting the intrinsic sparsity and the differential spectral domain 

sparsity of the two dimensional cyclic spectrum of communication 

signals. Based on the linear relationship between the time-varying data 

covariance of the compressive samples and the unknown cyclic 

spectrum, the proposed estimator utilizes the symmetry property of the 

cyclic spectrum to improve the smoothness of the recovered cyclic 

spectrum and then to detect the spectrum occupancy accurately and 

robustly. Simulation results demonstrate the effectiveness of the 

developed estimator under different compression ratio cases. 

 

Keywords—Cyclostationary Signal Processing, Cyclic Spectrum, 

Sub-Nyquist Sampling, Cyclic Feature Detection, Differential 
1ℓ   

minimization.  

I. INTRODUCTION 

OR most manmade signals, such as communication, radar, 

remote sensing and sonar systems, some parameters vary 

periodically with time, even under certain circumstances 

contain multiple incommensurate periods. For example, 

sinusoidal carries in amplitude, phase and frequency 

modulation systems, or periodic keying of the amplitude, phase 

and frequency in digital modulation systems. The case that the 

statistical parameters vary in time with single or multiple 

periodicities can be interpreted as cyclostationary. The spectral 

lines exists when quadratically transforming the cyclostationary 

signals, which means that the autocorrelation function fluctuates 

with time periodically. This spectral correlation property, as 

well as spectral redundancy, reflects the fundamental 

characteristic of cyclostationary signals and describes the 
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correlation exists between spectral components of the random 

signals in different spectral bands [1]. It is important to exploit 

the inherent spectral redundancy to perform various signal 

processing task including detecting the presence of signals 

corrupted by noise and interference, identifying the modulation 

and waveform patterns, estimating parameters such as carrier 

frequency, symbol period and occupied frequency bandwidth. 

In this paper we aim to develop cyclic spectrum recovery 

techniques that are efficient in computation and feasible in 

practical implementation. The cyclic spectrum is able to 

separate multiple signals that have the same carrier frequency, 

keying frequency or symbol rate, which means they occupy 

identical band in time or frequency domain while there is no 

overlapping between the spectral correlation density functions 

(SCD) or, equivalently, cyclic spectrum of these signals. 

Compared to the conventional power spectrum estimation that 

ignore cyclostationary, the advantages of cyclic spectrum are in 

the following aspects: 

- Reliable anti-interference ability. The power spectrum of 

signals and noise/interference may overlap each other in the 

frequency domain, while these spectral components can be 

successfully separated in the cyclic frequency domain. For 

example, Gaussian noise exhibits nonzero entries only at 0α = , 

that is, the noise cannot affect the signal components at 0α ≠ . 

- A good sense of identification. The distinct spectral 

correlation characteristics of different signals are easily 

distinguishable on two dimensional cyclic spectrum. For 

example, the magnitude of the SCD for a pulse-amplitude 

modulated (PAM) signal exhibits peaks at 
ck T , 0, 1, 2,k = ± ± ⋯ , 

and the SCD for a binary phase-shift keyed (BPSK) signal 

contains periodic peaks at ( )02 cf k T± + , 0, 1, 2,k = ± ± ⋯ . 

- Abundant parameter information. Cyclic spectrum is 

obtained by measuring the temporal correlation of the filtered 

signals, which is identical to the spectral density of correlation 

at frequencies / 2f α+  and / 2f α− . Therefore cyclic spectrum 

contains more information including amplitudes and phases of 

the spectral components of the signals in order to perform 

multi-parameter estimation task. 

Although cyclic spectrum is robust to uncertain noise and 

interference, and outperforms under low signal-to-noise ratio 

(SNR) conditions, and can identify various modulation types, it 

requires a sampling rate that is higher than Nyquist rate to 
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induce cyclostationarity and also needs a long observation time 

to acquire reliable cyclic statistics [1][2]. Especially when the 

bandwidth of the signals becomes much wider from 300 MHz to 

several GHz, the wideband receivers require ultra-high 

analog-to-digital (A/D) sampling rate, in combination with large 

computation and storage cost, these drawbacks limit the 

dynamic range of the receivers in practical applications [3]. 

However, due to low simultaneous occupancy utilization in 

contrast to the whole spectrum width [4], it is able to exploit the 

sparsity property of the cyclic spectrum of communication 

signals in order to not only significantly reduce the sampling 

rate but also robustness against uncertain noise and low SNR 

conditions. 

A series of research of wideband spectrum sensing were 

presented in [5][6][7][8], where the authors focused on 

determining spectrum occupancy by spectrum estimation first. 

These methods are still be affected by the spectrum estimation 

accuracy that is easily influenced by noise uncertainty. 

Accordingly, compressive sampling based cyclic spectrum 

reconstruction techniques have been developed, which directly 

and effectively recovery the sparse cyclic spectrum from 

sub-Nyquist samples. The work of [9] expressed the linear 

relationship between the correlation matrix of 

non-uniform-sampled samples and the signal correlation matrix. 

The authors exploited the block Toeplitz structure of the wide 

sense cyclostationary signal correlation matrix so that the linear 

relationship can be presented as an overdetermined system. The 

innovation of [10] was to derive a method for cyclic spectrum 

reconstruction for two different sparse multiband signals 

sampling schemes: multicoset sampling [11] and modulated 

wideband converter [12], and provided the minimal sampling 

rate allowing for perfect reconstruction for both sparse and 

non-sparse signals. A transformed linear system has been 

established in [13] to connect the time-varying cross-correlation 

of compressive measurements with the cyclic spectrum. 

Furthermore in some special cases this method still maintained 

valid without taking any sparsity constraint into account. 

Another similar study was presented in [14]. The authors also 

formulated the time-varying cross-correlation of compressive 

samples as a function of the cyclic spectrum, and took 

advantage of the folded replicable property of the cyclic 

spectrum of the digital samples to acquire the original cyclic 

spectrum. 

Compared to prior work, our contribution is essentially to 

propose a cyclic spectrum estimator by providing an additional 

differential sparsity constraint as well as the unique sparsity 

property of the cyclic spectrum. Based on the linear relationship 

between the compressive measurements and the cyclic spectrum 

in [14], the cyclic spectrum can be feasibly solved via convex 

1ℓ  norm minimization. The two terms of sparsity constraints 

represent the intrinsic sparsity and smoothness of the optimizer, 

respectively. Afterwards, the spectrum occupancy can be 

detected from the recovered cyclic spectrum by using a 

multi-cycle generalized likelihood ratio test (GLRT) [15]. 

II. PRELIMINARIES AND PROBLEM FORMULATION 

A. Review Stage 

Consider k  active primary users signals over a wide band in 

the frequency range 
max max[ , ]f f− , we have 

 ( ) ( ) ( )
1

k

i

i

x t x t n t
=

= +∑   (1) 

where ( )ix t  denotes the i th signal, 1, ,i k= ⋯ , ( )n t  is 

independently and identically distributed zero-mean Gaussian 

noise with noise variance 2σ .  

According to the definition of the cyclic autocorrelation 

function 2( , ) ( / 2) ( / 2) j t

xR x t x t e dtπαα τ τ τ∗ −= + −∫ , the cyclic 

spectrum is the Fourier transform of ( ),xR α τ  with respect to the 

time-delay τ  

 ( ) ( ) 2, , j f

x xS f R e dπ τα α τ τ−= ∫   (2) 

where α  denotes the cyclic frequency and f  represents the 

frequency. The sequence of digital samples of ( )x t  is defined as 

( ){ }: 0, 1, 2,sx nT n = ± ± ⋯ , where 
sT  is the periodic time sampling 

interval, 1 /s sT f= , 
sf  denotes the sampling rate. Therefore the 

power spectral density ( )x
S fɶ  of ( )sx nT  is related to the power 

spectral density ( )xS f  of the waveform by the aliasing formula 

[1] 

 ( ) 1
x x

ns s

n
S f S f

T T

∞

=−∞

 
= − 

 
∑ɶ   (3) 

This aliasing formula can be generalized to cyclic spectrum 

[1] as follows 

 ( )
,

1

2
sm T

x x

m ns s s

m n
S f S f

T T T

αα
∞

+

=−∞

 
= − − 

 
∑ɶ   (4) 

It is known that the support regions in the bifrequency for the 

cyclic spectrum that is aliased by periodic time sampling consist 

of multiple diamond-shaped regions. As is shown in Fig. 1, the 

cyclic spectrum exhibits nonzero entries only for 
max2f fα+ ≤ , 

while the cyclic spectrum of digital samples contains multiple 

folded replicas of the original cyclic spectrum [14], Fig. 1 shows 

the folded cyclic spectrum within 0 , sf fα≤ ≤ . Therefore we can 

unfold the original cyclic spectrum from the folded cyclic 

spectrum of digital samples by mapping the subregions I, II and 

III into corresponding positions. 
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Fig. 1 The support regions of the cyclic spectrum in periodic time sampling 

case. Illustration of Eq. (4) in the bifrequency (left). Original cyclic spectrum 

and the folded version (middle and right). 
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III. CYCLIC SPECTRUM RECONSTRUCTION 

A. Obtain Compressive Measurements from CS Sampling 

Systems 

In many practical compressed sensing (CS) sampling systems 

that target continuous-time spectrally-sparse signals, such as 

Random Demodulator (RD) [16][17] and the Modulated 

Wideband Converter (MWC) [12]. To acquire the samples, the 

continuous-time signal is taken to be passed through a set of 

filters, where each filter ( )ma t  constructs a row of the sampling 

matrix M N×∈A ℝ  . The matrix A  maps the analog signal to the 

discrete set of measurements. In compressed sensing framework 

the matrix A  satisfies restricted isometry property (RIP) [18] 

whose entries are chosen independent and identically 

distributed according to a Gaussian, Bernoulli, or more 

generally any sub-gaussian distribution. Therefore the 

compressive measurements can be obtained from the CS 

sampling system 

 =z Ax   (5) 

The digital representation of the continuous-time signal is 

given by [ ] [ ] T

0 , , 1x x N = − x ⋯ , and the compressive samples is 

[ ] [ ] T

0 , , 1z z M = − z ⋯ . That is, the Nyquist sampling rate is 

1s sT f= , where 
sT  is the uniform sampling interval, and the 

compressive sampling rate is ( / )sc sf M N f= , where M N≪ . 

B. Relationship between Compressive Samples with Cyclic 

Spectrum 

Consider the covariance matrix of compressive samples z , 

we have { }T

z t tE=R z z . Since the elements of 
zR  are symmetric, 

the upper triangular matrix of 
zR  can be stacked into a vector 

zr , which is given by 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) T

0,0 , 1,0 , , 1,0 ,

0,1 , 1,1 , , 2,1 , , 0, 1

x x x x

x x x x

r r r N

r r r N r N

= −

− − 

r ⋯

⋯ ⋯

  (6) 

According to Eq. (5) it can be obtained that H

z x
=R AR A . It is 

shown in [14] that the vectorized version of 
xR  is in relation to 

zr  in the following way 

 { }z M zvec=r Q R   (7) 

where { } ( )( ) 21 2
0,1 2,1

M M M

M

+ ×
∈Q  [14]. Therefore Eq. (7) can be 

represented as 

 { } ( ) { }H

z M x M xvec vec= = ⊗r Q AR A Q A A R   (8) 

Now we want to relate 
xr  to the cyclic spectrum so that the 

linear relationship can be formulated between each other. As is 

shown in Eq. (2), denote ( ),a b  be the digital representation of 

the bifrequency ( ), fα , we have 

 ( ) ( ),s sa N f f b N fα = =   (9) 

where a  is the digital cyclic frequency and b  is the digital 

frequency. Therefore the discrete cyclic spectrum with respect 

to time-lag ν  is given by 

 ( ) ( ) ( ) ( )
21

0

, ,
N j bv

c c N
x x

v

s a b r a v e

π− −

=

= ∑ ɶ   (10) 

where ( ) ( ),
c

x
r a vɶ  is the cyclic autocorrelation 

 ( ) ( ) ( )
21

0

1
, ,

N v j an j av
c N N

x x

n

r a v r n v e e
N

π π− − − −

=

  
=  

  
∑ɶ   (11) 

Eq. (9) and (10) can be written in the following matrix form 

[14] 

 ( )
1

0

N
c

x v v

v

−

=

= ∑R G RDɶ   (12) 

 ( ) ( )c c

x x
=S R Fɶ   (13) 

where F  is the discrete fourier transform matrix, the ( ),v v th 

diagonal elements of 
vD  are 1, and 

vG  satisfies 

[ ]( )
( )

2
2

,

,

1
v

j a n N

v a n

a n

e
N

π  
− + 

 
 

=  
  

G  

Similarly we can obtain 

 ( ){ } ( ) { }
1

T

0

N
c

x v v

v

vec vec
−

=

= ⊗∑R D G Rɶ   (14) 

Using Eq. (12) it holds that 

 ( ){ } ( ){ } ( ) ( ){ }1 Tc c c

x x N xvec vec vec− −= = ⊗R S F F I Sɶ   (15) 

From Eq. (13) and Eq. (14) we have 

 ( )† c

x x
=r H Ws   (16) 

where ( )
1

T

0

N

v v

v

−

=

= ⊗∑H D G B  and T

N

−= ⊗W F I , 
NI  is N N×  identity 

matrix. 

Therefore we can obtain the linear relationship between the 

vectorized cyclic spectrum and the compressive samples by 

combining Eq. (8) with Eq. (16) 

 ( )† c

z x
=r ΦH Ws   (17) 

where ( )M= ⊗Φ Q A A . 

C. Estimating the Cyclic Spectrum via Sparse Constraints 

Consider the signal ( )x t  contains multiple BPSK signals, the 

original cyclic spectrum and the folded replicas are shown in 

Fig. 2. It is shown from the support regions labeled by solid line 

that the cyclic spectrum of BPSK signals in periodic time 

sampling case exhibits two sparsity properties. 

2fmax

fmax-fmax

-2fmax

2fmax

fmax

fs

fs

fc-fc

 
Fig. 2 Original cyclic spectrum of two BPSK signals (left). The folded 

version of original cyclic spectrum (right). 

- Intrinsic bifrequency domain sparsity. Only the entries at 

the support regions are nonzero and all the other entries are 

zero, which implies that ( )c
x

s  in Eq. (17) is sparse. 

- Differential frequency domain sparsity. Since the cyclic 

spectrum of the digital samples consists of folded replicas of the 

original cyclic spectrum, the folded cyclic spectrum remains 
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symmetric with respect to / 2sf  on the frequency direction. 

Therefore the symmetrical column-wise differences are sparse, 

this differential sparsity can be taken into account to improve 

the smoothness of the estimated cyclic spectrum. 

Hence we consider a ( )2 22N N×  matrix D , ( ), 1i i = −D  for 

any row index 21, 2i N ∈   . When ( ), 1i kN k N∈ +   , [ ]0, 1k N∈ − , 

only the column index j  satisfies ( )2 1j i N k N= + − −  elements 

being 1 and all other elements being 0. For example, denote 

4N = , the digital cyclic spectrum is a 4 4×  matrix, the 

differential matrix 8 16×∈D ℝ  is defined as follows 

1 0 0 0 1 0

0 1 1

0 1 1

1 0 1

1 1

1 1

1 1 0

0 0 1 1 0 0

− 
 − 
 −
 

− =  −
 

− 
 − 
 − 

D

⋯ ⋯ ⋯

⋮

⋱ ⋱

⋮

⋮

⋮ ⋱

⋯

  

The entries of ( )c
x

Ds  reflects the difference of the 

corresponding two columns as mentioned earlier, therefore 
( )c
x

Ds  is a sparse vector. According to Eq. (17) and the two 

sparsity property, the cyclic spectrum reconstruction can be 

formulated by the following optimization problem 

 ( )
( )

( ) ( ) ( )2

1 2
2 1 1

ˆ argmin
c
x

c c c c

x z x x xµ µ= − + +
s

s r Ψs s Ds   (18) 

where †=Ψ ΦH W . The second and the third 
1ℓ  norm penalty 

term in Eq. (18) represent the intrinsic sparsity and the 

smoothness of the optimizer respectively. The choices of the 

regularization parameters 
1µ  and 

2µ  play a key role in affecting 

the performance of the cyclic spectrum reconstruction, so in 

order to find reasonable guidelines for choosing the parameters, 

we rely on the bound results of these parameters which was 

derived in [19]. Assume the maximum thresholds of 
1µ  and 

2µ  

are given by 
1

µ∗  and 
2

µ∗ , the actual values of 
1µ  and 

2µ  are 

generally set to 5%-10% of 
1

µ∗  and 
2

µ∗  in the following 

simulations, which will lead to robust and satisfied 

performance. 

IV. SPECTRUM OCCUPANCY DETECTION BASED ON 

RECOVERED CYCLIC SPECTRUM 

After we obtain the recovered cyclic spectrum by solving the 

optimization problem Eq. (18), the spectrum occupancy can be 

detected from the vectorized cyclic spectrum ( )ˆ c

x
s . The 

multi-cycle generalized likelihood ratio test (GLRT) 

framework, which is feasible for all types of modulation and 

waveform types, is used to detect the presence of primary 

signals on the whole wideband simultaneously [14]. The 

amounts of the sub-bands that need identify whether exists 

primary signals or not depend on the frequency resolution of the 

digital cyclic spectrum. Denote the ( ) ( )n

s
f n N f= , [ ]0, 2n N∈ , 

the detection task is to acquire the carrier frequency and 

bandwidth of each signals after making a decision for all ( )nf . 

V. EXPERIMENTS AND ANALYSIS 

The goal of this section is to evaluate the reconstruction 

property of the optimization problem (18) obtained by taking 

and performing recovery in noiseless and different compression 

ratios cases. In all experiments below, we randomly generate the 

sampling matrices A  by drawing from i.i.d Gaussian matrices 

and normalizing the columns to have norm 1. The Normalized 

Mean Square Error (NMSE) is used as a performance measure 

of cyclic spectrum reconstruction, which is defined by 

( ) ( ) ( )2 2

2 2

ˆ c c c

x x x−s s s . 

Intuitively the two-dimensional cyclic spectrum is sparse, so 

that 
1ℓ  norm penalty function can be exploited to describe the 

sparsity of ( )c
x

s  and furthermore induce a sparse solution from 

the following optimization problem, which is given by [14]. 

 
( )

( ) ( )2

2 1
min

c
x

c c

z x xλ− +
s

r Ψs s   (19) 

In order to show the superiority compared to the 

reconstruction performance of the above 
1ℓ  norm regularized 

least squares problems, we generate two BPSK signals as the 

primary signals, whose center frequencies also locate at 

187.5MHz and 375MHz respectively. The bandwidth of the 

frequency spectrum is 
max 500Hzf = , the Nyquist rate is 

1GHzsf = , the symbol period of each signal is 0.1 sµ . 

Note that in the practical implementation, such as MWC [12], 

the signal ( )x t  enters M  channels simultaneously. In the i th 

channel, ( )x t  is multiplied by a pT -periodic mixing function 

( )ip t  . Therefore the total observation time T  can be divided 

into / BL T T=  intervals, where 
BT  is the length of each interval. 

A compressive sample vector ( )tz ℓ   is obtained in each interval, 

which provide a useful way to estimate the covariance matrix 

ˆ
z

R  of the compressive samples by ( ) ( )1 H

0

ˆ (1 / )
L

z t tL
−

=
= ∑R z z

ℓ
ℓ ℓ , and 

then obtain ˆ
zr  derived by Eq. (18). The estimation error reduces 

when the segmentation numbers L  of the total observation time 

increases, but deteriorate the frequency resolution of ( )ˆ c

x
s . 

In Fig. 3 we plot the cyclic spectrum recovery performance as 

a function of the compression ratio based on 500 Monte-Carlo 

simulations. The compression ratio is from 0.1 to 1, and the 

segmentation numbers of the total observation time are $L = 

40,200$. It can be seen that the NMSEs of our estimator 

outperform the estimator Eq. (19) owing to the additional 

differential frequency domain sparsity. The NMSEs of the 

cyclic spectrum recovery become stable when the compression 

ratio is larger than 0.5, that is, the recovery performance of the 

estimator tends to robust. Furthermore we find that the cyclic 

spectrum recovery in the 200L =  case has slightly better 

performance than it in the 40L =  case, because the estimation 

error of ˆ
zr  reduces when L  increase. 

We also evaluate the detection probability versus different 

compression ratio in order to demonstrate the effectiveness that 

the recovered cyclic spectrum can improve the detection 

accuracy for determining the spectrum occupancy. Whether the 
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frequency ( )nf  contains primary signals or not depends on the 

GLRT statistic, and the false alarm rate is fixed at 0.1faP = . As is 

shown in Fig. 4 that based on 500 Monte-Carlo simulations 

when the compression ratio is larger than 0.25 the detection 

probability can achieve no less than 95% 
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Fig. 3 Comparisons of NMSE in different compression ratio cases 
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Fig. 4 The detection probability in different compression ratio cases 

 

VI. CONCLUSION AND FUTURE WORK 

A novel cyclic spectrum reconstruction method is introduced 

based on the intrinsic bifrequency domain sparsity and the 

differential frequency domain sparsity. The main contribution 

of this work is to formulate an underdetermined minimization 

problem with a dual sparsity penalty. Simulations results 

demonstrate the effectiveness of the proposed estimator that 

further improve the detection probability of spectrum 

occupancy. Interesting aspects of future research include 

investigating the d  ( 2d ≥ )-dimensional off-grid signal 

recovery and parameter estimation [21]. 
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